

EOCP Formulae, Conversions, and Abbreviations

Conversion Factors and Constants	Dimensions	Abbreviations	
π (Pi) = 3.14 1 BTU = 1.055 kilojoule 1ft-lb = 1.356 joule 1 ha = 10,000 m ² 1 horsepower (electric) = 0.746 kw 1 joule = 0.738 foot pounds (ft-lb) 1 kilojoule = 0.9478 BTU 1 inch of water = 0.249 kpa 1 kpa = 4.015 inches of water 1 kpa = 0.145 PSI (or psi) 1psi = 6.895 kpa 1 kpa = 0.102 metre of water 1 meter of water = 9.807 kpa 1 litre of water = 1 kg 1 kw = 1.34 horsepower (electric) 1m ³ (cu m) = 1,000 litres (L)	A Area B Base (of a triangle) C Circumference (of a circle) D Depth H Height L Length P Perimeter W Width d Diameter r radius	BHP or bhP BOD BOD _E BOD _I Conc Den DR (Dose) H MLSS MLSS _F MLSS _I MLSS% MLVSS MHP or mhp % Chem Q Q _B Q _{Int} Q _W RASS (RAS) SG SSV or SV-30 TSS TSS _E Vel Vol V _{AT} V _C Vol _W WHP or whp WASS (WAS)	Brake horsepower Biochemical oxygen demand Biochemical oxygen demand of the effluent Biochemical oxygen demand of the influent Concentration (mg/L, %, or as decimal) Density (g/cm ³) Dosing Concentration (expressed as mg/L) Head (usually expressed in feet or metres) Mixed Liquor Suspended Solids Mixed Liquor Suspended Solids (Final) Mixed Liquor Suspended Solids (Initial) MLSS expressed as percentage Mixed Liquor Volatile Suspended Solids Motor horsepower Percentage of active ingredient Flow rate Filter backwash flow Internal flow within plant Sludge wastage flow Return Activated Suspended Solids Specific Gravity Settled Sludge Volume (after 30 min) Total Suspended Solids Total Suspended Solids in effluent Velocity Volume Volume of Aeration Tank Volume of Clarifier Volume of Water Water horsepower Waste Activated Suspended Solids

Calculation	Description	Formula
Length		
Circumference of a circle	$\pi \times \text{diameter}$	$C = \pi \times d \text{ or } 2 \times \pi \times r$
Perimeter of a rectangle or a square	$2 \times (\text{length} + \text{width})$	$P = 2 \times (L + W)$
Areas		
Area of a circle	$\pi \times \text{radius} \times \text{radius}$	$A = \pi \times r^2 \text{ or } \pi \times d^2/4$
Area of a rectangle	$\text{length}(L) \times \text{width}(W)$	$A = L \times W$
Area of a triangle	$\frac{1}{2} \times \text{base}(B) \times \text{height}(H)$	$A = 0.5 \times B \times H$
Surface area of a sphere (an air bubble)		$A = 4 \times \pi \times r^2 \text{ or } \pi \times d^2$
Volume		
Volume of a rectangular tank	$\text{length} \times \text{width} \times \text{height (or depth)}$	$\text{Vol} = L \times W \times H$
Volume of a cylindrical tank	$\text{area} \times \text{height (or depth)}$	$\text{Vol} = \pi \times r^2 \times H$
Volume of a pipe	$\text{cross-sectional area} \times \text{length}$	$\text{Vol} = \pi \times r^2 \times L$
Volume of a cone	$\frac{1}{3} \times \text{area} \times \text{height}$	$\text{Vol} = \frac{1}{3} \times \pi \times r^2 \times H$
Volume of a lagoon	$\text{average of top and bottom areas} \times \text{height}$	$\text{Vol} = ((L_T + L_B)/2) \times ((W_T + W_B)/2) \times D$
Volume of a sphere (an air bubble)		$\text{Vol} = \frac{4}{3} \times (\pi \times r^3) \text{ or } (\pi \times d^3)/6$
Rate of Flow (Q)		
Flow in an open channel	volume per unit of time	(usually expressed as L/sec or m ³ /hr)
Velocity in an open channel	$\text{width} \times \text{depth} \times \text{velocity}$	$Q = W \times D \times \text{Vel}$
Flow in a pipe	flow rate per unit of area	$\text{Vel} = Q/(W \times D)$
Velocity in a pipe	$\text{cross-sectional area} \times \text{velocity}$	$Q = \pi \times r^2 \times \text{Vel}$
	flow rate per unit of area	$\text{Vel} = Q/(\pi \times r^2)$
Detention Time (DT)		
Detention time in a pipe	volume divided by flow	$(\pi \times r^2 \times L)/Q$
Detention time in a tank	$\text{area} \times \text{length}/\text{flow}$	$(L \times W \times H)/Q \text{ or } (\pi \times r^2 \times H)/Q$

Calculation	Description	Formula
Hydraulic Loading Rate	flow divided by volume or area	
Rotating Biological Contractor (RBC)	flow per unit of media surface area	$Q/(2 \times \pi \times r^2 \times N)$ (N = No. of discs)
Aeration tank (AT)	flow per unit volume	$Q/(L \times W \times H)$ or $Q/(\pi \times r^2 \times D)$
Filter flow rate	forward flow per unit of surface area	$Q/(L \times W)$ or $Q/(\pi \times r^2)$ [units (m ³ /hr)/m ²]*
Filter backwash flow	backwash flow per unit of surface area	$Q_B/(L \times W)$ or $Q/(\pi \times r^2)$ [units (m ³ /hr)/m ²]* *also expressed as m/hr or L/sec/m ²
Hydraulic Overflow Rate		
Weir overflow rate	flow per unit of weir length	(Q/L)
Surface overflow rate	flow per unit of clarifier area	$Q/(L \times W)$ or $Q/(\pi \times r^2)$
Chemical Feed Rate [L/Day]	Rate of addition based on % active and density	$(DR \times Q / (\text{Conc [decimal]} \times \text{Den} \times 1000))$
Chlorine or Chemical Feed Rate		
Chlorine Dosage	Amount of Cl ₂ to be added/vol of water to be treated	$C_1 V_1 = C_2 V_2$ $(\text{Conc [decimal]} \times \text{Vol (if liquid) 1,000} / \text{Vol}_w [\text{m}^3])$ or $(\text{Wt [kg]} \times 1000) / \text{Vol}_w [\text{m}^3]$
Chemical Feed Rate [L/Day]	rate of addition based on % active and density	$(DR \times Q / (\text{Conc [decimal]} \times \text{Den} \times 1000))$
Organic Loading	amount or weight added/volume or area to which it is added usually (flow x concentration)/volume or area	
Raw water or sewage TSS to Clarifier	flow x TSS per unit area of clarifier	$(Q \times \text{TSS})/(L \times W)$ or $(Q \times \text{TSS})/(\pi \times r^2)$
BOD to Aeration Tank (AT)	influent BOD per unit of AT volume	$(Q \times \text{BOD})/(L \times W \times H)$
BOD to RBC	influent BOD per unit area of media surface	$(Q \times \text{BOD})/(2 \times \pi \times r^2 \times N)$ (N = No. of discs)
TSS to Filter	influent TSS per unit area of filter surface	$(Q \times \text{TSS})/(L \times W)$ or $(Q \times \text{TSS})/(\pi \times r^2)$
MLSS to Clarifier	internal flow x MLSS per unit area of clarifier	$(Q_{\text{Int}} \times \text{TSS})/(L \times W)$ or $(Q_{\text{Int}} \times \text{TSS})/(\pi \times r^2)$

Calculation	Description	Formula
Wastewater Sludge Calculations		
Sludge Volume Index (SVI)	volume occupied by 1g of dry sludge	$SSV \text{ (or SV-30)} \times 1000 / MLSS$
Sludge Density Index (SDI)	inverse of SVI	$100 / SVI$
F/M (food to microorganism ratio)	BOD added to treatment system divided by amount of microorganisms in the systems	$(Q \times BOD) / (MLVSS \times (V_{AT} + V_C))$
Sludge Recycle rate	fraction of influent flow in sludge recycle	$Q_R = (Q \times MLSS) / (RASS - MLSS) \text{ or}$ $Q_R = Q / (100 / (MLSS \% \times SVI) - 1)$
Sludge Wasting rate	sludge to digestor to maintain desired MLSS	$Q_w = ((MLSS_I - MLSS_F) \times V_{AT}) RASS$
Mean Cell Retention Time	aka Sludge Age	$MCRT = \frac{MLSS \times (V_{AT} + V_C)}{(Q \times TSS_E) + (Q_w \times WASS)}$
Horsepower		
Brake Horsepower, Imperial	hp required to drive a pump	$BHP[\text{hp}] = \frac{Q[\text{USgpm} \times H[\text{ft}] \times SG]}{3960 \times \text{Pump Efficiency}}$
Brake Horsepower, Metric	hp required to drive a pump	$BHP[\text{kw}] = \frac{9.81 Q \left[\frac{\text{m}^3}{\text{sec}} \right] \times H[\text{m}] \times SG}{\text{Pump Efficiency}}$
Efficiency		
Efficiency of treatment	input minus output as a percentage of input	$100 \times (BOD_I - BOD_E) / BOD_I$
Motor efficiency	motor output energy as a % of input electrical energy	$(100 \times bhp) / mhp$
Pump efficiency	water output energy as a % of input motor energy	$(100 \times whp) / bhp$
Overall efficiency	water output energy as a % of input electrical energy	$(100 \times whp) / mhp$