Formula/Conversion Table

Wastewater Treatment, Collection, Industrial Waste, \& Wastewater Laboratory Exams

Alkalinity, $\mathbf{m g} / \mathrm{L}$ as $\mathrm{CaCO}_{3}=\frac{(\text { Titrant Volume, } \mathrm{mL})(\text { Acid Normality })(50,000)}{\text { Sample Volume, } \mathrm{mL}}$
Amps $=\frac{\text { Volts }}{\text { Ohms }}$
Area of Circle* $=(0.785)\left(\right.$ Diameter $\left.^{2}\right)$
Area of Circle $=(3.14)\left(\right.$ Radius $\left.{ }^{2}\right)$
Area of Cone (lateral area) $=(3.14)($ Radius $) \sqrt{\text { Radius }^{2}+\text { Height }^{2}}$
Area of Cone (total surface area $)=(3.14)($ Radius $)\left(\right.$ Radius $\left.+\sqrt{\text { Radius }^{2}+\text { Height }^{2}}\right)$
Area of Cylinder (total exterior surface area) $=\underset{\text { Where } S A=\text { surface area }}{[\text { End } \# 1 ~ S A]}+[$ End $]+[(3.14)($ Diameter $)($ Height or Depth $)]$
Area of Rectangle* $=($ Length $)($ Width $)$
Area of Right Triangle* $=\frac{(\text { Base })(\text { Height })}{2}$
Average (arithmetic mean) $=\frac{\text { Sum of All Terms }}{\text { Numberof Terms }}$
Average (geometric mean) $=\left[\left(\mathrm{X}_{1}\right)\left(\mathrm{X}_{2}\right)\left(\mathrm{X}_{3}\right)\left(\mathrm{X}_{4}\right)\left(\mathrm{X}_{n}\right)\right]^{1 / n} \quad$ The n th root of the product of n numbers
Biochemical Oxygen Demand (seeded), mg/L=
[(InitialDO, mg/L)-(Final DO, mg/L)- Seed Correction Factor, mg/L)][300 mL] mL of Sample

Biochemical Oxygen Demand (unseeded), mg/L $=\frac{[(\text { Initial DO, mg/L) }-(\text { Final DO, } \mathrm{mg} / \mathrm{L})][300 \mathrm{~mL}]}{\mathrm{mL} \text { of Sample }}$
\# CFU/100mL $=\frac{[(\# \text { of Colonies on Plate })(100)}{\mathrm{mL} \text { of Sample }}$
Chemical Feed Pump Setting, \% Stroke $=\frac{\text { DesiredFlow }}{\text { MaximumFlow }} \times 100 \%$
Chemical Feed Pump Setting, $\mathbf{m L} / \mathbf{m i n}=\frac{(\text { Flow, MGD })(\text { Dose, } \mathrm{mg} / \mathrm{L})(3.785 \mathrm{~L} / \mathrm{gal})(1,000,000 \mathrm{gal} / \mathrm{MG})}{\text { (Feed Chemical Density, } \mathrm{mg} / \mathrm{mL})(1,440 \mathrm{~min} / \text { day })}$

Chemical Feed Pump Setting, $\mathbf{m L} / \mathbf{m i n}=$

$$
\frac{\left(\text { Flow, } \mathrm{m}^{3} / \text { day }\right)(\text { Dose }, \mathrm{mg} / \mathrm{L})}{\left(\text { Feed Chemical Density, } \mathrm{g} / \mathrm{cm}^{3}\right)(\text { Active Chemical, } \% \text { expressed as a decimal })(1,440 \mathrm{~min} / \text { day })}
$$

Circumference of Circle $=(3.14)($ Diameter $)$
Composite Sample Single Portion $=\frac{(\text { Instantaneous Flow) }(\text { Total Sample Volume })}{(\text { Number of Portions)(AverageFlow) }}$
Cycle Time, $\boldsymbol{\operatorname { m i n }}=\frac{\text { Storage Volume, gal }}{(\text { Pump Capacity, gpm })-(\text { Wet Well Inflow, gpm })}$
Cycle Time, $\boldsymbol{\operatorname { m i n }}=\frac{\text { Storage Volume, } \mathrm{m}^{3}}{\left(\text { Pump Capacity, } \mathrm{m}^{3} / \mathrm{min}\right)-\left(\text { Wet Well Inflow, } \mathrm{m}^{3} / \mathrm{min}\right)}$
Degrees Celsius $=\frac{\left({ }^{\circ} \mathrm{F}-32\right)}{1.8}$
Degrees Fahrenheit $=\left({ }^{\circ} \mathrm{C}\right)(1.8)+32$
Detention Time $=\frac{\text { Volume }}{\text { Flow }} \quad$ Units must be compatible
Electromotive Force, volts* = (Current, amps)(Resistance, ohms)
Feed Rate, Ib/day* $=\frac{(\text { Dosage, } \mathrm{mg} / \mathrm{L})(\text { Flow, MGD })(8.34 \mathrm{lb} / \mathrm{gal})}{\text { Purity, } \% \text { expressed as a decimal }}$
Feed Rate, $\mathbf{k g} /$ day $*=\frac{(\text { Dosage, } \mathrm{mg} / \mathrm{L})\left(\text { Flow Rate, } \mathrm{m}^{3} / \text { day }\right)}{(\text { Purity, } \% \text { expressed as a decimal })(1,000)}$
Filter Backwash Rate, $\mathbf{g p m} / \mathrm{ft}^{2}=\frac{\text { Flow, } \mathrm{gpm}}{\text { Filter Area, } \mathrm{ft}^{2}}$
Filter Backwash Rate, $\mathbf{L} / \mathbf{m}^{2}=\frac{\text { Flow, } \mathrm{L} / \mathrm{sec}}{\text { Filter Area, } \mathrm{m}^{2}}$
Filter Backwash Rise Rate, $\mathbf{i n} / \mathbf{m i n}=\frac{\left(\text { Backwash Rate, } \mathrm{gpm} / \mathrm{ft}^{2}\right)(12 \mathrm{in} / \mathrm{ft})}{7.48 \mathrm{gal} / \mathrm{ft}^{3}}$
Filter Backwash Rise Rate, $\mathbf{c m} / \mathbf{m i n}=\frac{\text { Water Rise, } \mathrm{cm}}{\text { Time, } \mathrm{min}}$
Filter Yield, $\mathbf{l b} / \mathbf{h r} / \mathbf{f t}^{\mathbf{2}}=\frac{(\text { Solids Loading, } \mathrm{lb} / \text { day })(\text { Recovery }, \% \text { expressed as a decimal })}{\left(\text { Filter Operation, hr/day) }\left(\text { Area, } \mathrm{ft}^{2}\right)\right.}$
Filter Yield, $\mathbf{k g} / \mathbf{h r} / \mathbf{m}^{2}=\frac{\text { (Solids Concentration, \% expressed as a decimal)(Sludge Feed Rate, L/hr)(10) }}{\text { (Surface Area of Filter, } \mathrm{m}^{2} \text {) }}$
Flow Rate, $\mathrm{ft}^{3} / \mathrm{sec}^{*}=\left(\right.$ Area, $\left.\mathrm{ft}^{2}\right)($ Velocity, $\mathrm{ft} / \mathrm{sec})$
Flow Rate, $\mathbf{m}^{3} /$ sec $^{*}=\left(\right.$ Area, $\left.m^{2}\right)($ Velocity, $m / s e c)$
Food/Microorganism Ratio $=\frac{\mathrm{BOD}_{5}, \mathrm{lb} / \text { day }}{\text { MLVSS, } \mathrm{lb}}$

Food/Microorganism Ratio $=\frac{\mathrm{BOD}_{5}, \mathrm{~kg} / \mathrm{day}}{\text { MLVSS, } \mathrm{kg}}$
Force, $\mathbf{l b}^{*}=($ Pressure, psi$)\left(\right.$ Area, in $\left.^{2}\right)$
Force, newtons* $=($ Pressure, pascals $)\left(\right.$ Area, $\left.\mathrm{m}^{2}\right)$
Hardness, as $\mathrm{mg} \mathrm{CaCO} / \mathbf{3} / \mathrm{L}=\frac{(\text { Titrant Volume, } \mathrm{mL})(1,000)}{\text { Sample Volume, } \mathrm{mL}} \quad$ Only when the titration factor is 1.00 of EDTA
Horsepower, Brake, $\mathbf{h p}=\frac{\text { (Flow, gpm)(Head, ft) }}{(3,960)(\text { Pump Efficiency, } \% \text { expressed as a decimal) }}$
Horsepower, Brake, $\mathbf{k W}=\frac{(9.8)\left(\mathrm{Flow}, \mathrm{m}^{3} / \mathrm{sec}\right)(\mathrm{Head}, \mathrm{m})}{\text { (Pump Efficiency, } \% \text { expressed as a decimal) }}$

Horsepower, Motor, $\mathbf{h p}=$

(Flow, gpm)(Head,ft)
$(3,960)$ (Pump Efficiency, \% expressed as a decimal)(Motor Efficiency, \% expressed as a decimal)
Horsepower, Motor, $\mathbf{k W}=$
(9.8)(Flow, $\left.\mathrm{m}^{3} / \mathrm{sec}\right)(\mathrm{Head}, \mathrm{m})$
(Pump Efficiency, \% expressed as a decimal)(Motor Efficiency, \% expressed as a decimal)
Horsepower, Water, $\mathbf{h p}=\frac{(\text { Flow, gpm })(\text { Head,ft })}{3,960}$
Horsepower, Water, $\mathbf{k W}=(9.8)\left(\right.$ Flow, $\left.\mathrm{m}^{3} / \mathrm{sec}\right)(\mathrm{Head}, \mathrm{m})$
Hydraulic Loading Rate, $\mathbf{g p d} / \mathrm{ft}^{2}=\frac{\text { Total Flow Applied, gpd }}{A r e a, \mathrm{ft}^{2}}$
Hydraulic Loading Rate, $\mathbf{m}^{3} /$ day $/ \mathbf{m}^{2}=\frac{\text { Total Flow Applied, } \mathrm{m}^{3} / \text { day }}{\text { Area, } \mathrm{m}^{2}}$
Loading Rate, lb/day* $=($ Flow, MGD $)($ Concentration, $\mathrm{mg} / \mathrm{L})(8.34 \mathrm{lb} / \mathrm{gal})$
Loading Rate, $\mathbf{k g} / \mathbf{d a y} *=\frac{\left(\text { Volume, } \mathrm{m}^{3} / \text { day }\right)(\text { Concentration, } \mathrm{mg} / \mathrm{L})}{1,000}$
Mass, lb* $=($ Volume, $M G)($ Concentration, $\mathrm{mg} / \mathrm{L})(8.34 \mathrm{lb} / \mathrm{gal})$
Mass, $\mathbf{k g}^{*}=\frac{\left(\text { Volume, } \mathrm{m}^{3}\right)(\text { Concentration, } \mathrm{mg} / \mathrm{L})}{1,000}$
Mean Cell Residence Time or Solids Retention Time, days $=\frac{(\text { Aeration Tank TSS, lb })+(\text { Clarifier TSS, lb })}{(\text { TSS Wasted, lb/day })+(\text { Effluent TSS, lb/day })}$
Milliequivalent $=(\mathrm{mL})($ Normality $)$

Molarity $=\frac{\text { Moles of Solute }}{\text { Liters of Solution }}$
Motor Efficiency, \% $=\frac{\text { Brake } \mathrm{hp}}{\text { Motor } \mathrm{hp}} \times 100 \%$
Normality $=\frac{\text { Number of Equivalent Weights of Solute }}{\text { Liters of Solution }}$
Number of Equivalent Weights $=\frac{\text { Total Weight }}{\text { EquivalentWeight }}$
Number of Moles $=\frac{\text { Total Weight }}{\text { Molecular Weight }}$
Organic Loading Rate-RBC, $\mathbf{l b} \mathbf{S B O D}_{\mathbf{5}} / \mathbf{d a y} / \mathbf{1 , 0 0 0} \mathrm{ft}^{\mathbf{2}}=\frac{\text { Organic Load, } \mathrm{lbSBOD}_{5} / \text { day }}{\text { Surface Area of Media, } 1,000 \mathrm{ft}^{2}}$
Organic Loading Rate-RBC, $\mathbf{k g ~ S B O D} \mathbf{5}_{5} / \mathbf{m}^{2}$ days $=\frac{\text { OrganicLoad, } \mathrm{kg} \mathrm{SBOD}_{5} / \text { day }}{\text { Surface Area of Media, } \mathrm{m}^{2}}$
Organic Loading Rate-Trickling Filter, $\mathbf{l b} \mathbf{B O D}_{5} / \mathbf{d a y} / \mathbf{1 , 0 0 0} \mathbf{f t}^{\mathbf{3}}=\frac{\text { Organic Load, } \mathrm{lb} \mathrm{BOD}_{5} / \text { day }}{\text { Volume, } 1,000 \mathrm{ft}^{3}}$
Organic Loading Rate-Trickling Filter, $\mathbf{k g} / \mathbf{m}^{3}$ days $=\frac{\text { Organic Load, } \mathrm{kg} \mathrm{BOD}}{5} / \mathrm{day}$
Oxygen Uptake Rate or Oxygen Consumption Rate, $\mathbf{m g} / \mathrm{L} / \mathbf{m i n}=\frac{\text { Oxygen Usage, } \mathrm{mg} / \mathrm{L}}{\text { Time, } \mathrm{min}}$
Population Equivalent, Organic $=\frac{(\text { Flow, MGD })(\mathrm{BOD}, \mathrm{mg} / \mathrm{L})(8.34 \mathrm{lb} / \mathrm{gal})}{0.17 \mathrm{lb} \mathrm{BOD} / \text { day } / \text { person }}$
Population Equivalent, Organic $=\frac{\left(\text { Flow }, \mathrm{m}^{3} / \text { day }\right)(\mathrm{BOD}, \mathrm{mg} / \mathrm{L})}{(1,000)(0.077 \mathrm{~kg} \text { BOD } / \text { day } / \text { person })}$
Power, $\mathbf{k W}=\frac{(\text { Flow, L/sec)(Head, } \mathrm{m})(9.8)}{1,000}$
Recirculation Ratio-Trickling Filter $=\frac{\text { Recirculated Flow }}{\text { Primary Effluent Flow }}$
Reduction of Volatile Solids, $\left.\%=\left(\frac{\mathrm{VS} \text { in }-\mathrm{VS} \text { out }}{\mathrm{VS} \text { in }-(\mathrm{VS} \text { in } \times \mathrm{VS} \text { out })}\right) \times 100 \% \quad \begin{array}{l}\text { All information (In and } \text { out }) \\ \text { must be in decimal form }\end{array}\right)$
Removal, $\%=\left(\frac{\mathrm{In}-\mathrm{Out}}{\mathrm{In}}\right) \times 100 \%$

Return Rate, \% $=\frac{\text { Return Flow Rate }}{\text { Influent Flow Rate }} \times 100 \%$
Return Sludge Rate-Solids Balance $=\frac{(\text { MLSS, } m g / L)(\text { Flow Rate, MGD })}{(\text { RAS Suspended Solids })-(\text { MLSS, mg/L) }}$
Slope, $\%=\frac{\text { Drop or Rise }}{\text { Distance }} \times 100 \%$
Sludge Density Index $=\frac{100}{\text { SVI }}$
Sludge Volume Index, $\mathbf{m L} / \mathbf{g}=\frac{\left(\mathrm{SSV}_{30}, \mathrm{~mL} / \mathrm{L}\right)(1,000 \mathrm{mg} / \mathrm{g})}{\mathrm{MLSS}, \mathrm{mg} / \mathrm{L}}$
Solids, $\mathbf{m g} / \mathbf{L}=\frac{(\text { Dry Solids, } \mathrm{g})(1,000,000)}{\text { Sample Volume, } \mathrm{mL}}$
Solids Capture, \% (Centrifuges) $=\left[\frac{\text { Cake TS, } \%}{\text { Feed Sludge TS, } \%}\right] \times\left[\frac{(\text { Feed Sludge TS, } \%)-(\text { Centrate TSS, \% })}{(\text { Cake TS, } \%)-(\text { Centrate TSS, } \%)}\right] \times 100 \%$
Solids Concentration, $\mathbf{m g} / \mathrm{L}=\frac{\text { Weight, } \mathrm{mg}}{\text { Volume, } \mathrm{L}}$
Solids Loading Rate, $\mathbf{l b} / \mathbf{d a y} / \mathbf{f t}^{\mathbf{2}}=\frac{\text { Solids Applied, } \mathrm{lb} / \text { day }}{\text { Surface Area, } \mathrm{ft}^{2}}$
Solids Loading Rate, $\mathbf{k g} / \mathbf{d a y} / \mathbf{m}^{2}=\frac{\text { Solids Applied, } \mathrm{kg} / \text { day }}{\text { Surface Area, } \mathrm{m}^{2}}$
Solids Retention Time: see Mean Cell Residence Time
Specific Gravity $=\frac{\text { Specific Weight of Substance, } 1 \mathrm{~b} / \mathrm{gal}}{8.34 \mathrm{lb} / \mathrm{gal}}$
Specific Gravity $=\frac{\text { Specific Weight of Substance, } \mathrm{kg} / \mathrm{L}}{1.0 \mathrm{~kg} / \mathrm{L}}$
Specific Oxygen Uptake Rate or Respiration Rate, $(\mathbf{m g} / \mathbf{g}) / \mathbf{h r}=\frac{\operatorname{SOUR}, \mathrm{mg} / \mathrm{L} / \mathrm{min}(60 \mathrm{~min})}{\mathrm{MLVSS}, \mathrm{g} / \mathrm{L}(1 \mathrm{hr})}$
Surface Loading Rate or Surface Overflow Rate, gpd/fft ${ }^{2}=\frac{\text { Flow, gpd }}{\text { Area, } \mathrm{ft}^{2}}$
Surface Loading Rate or Surface Overflow Rate, Lpd/m $\mathbf{m}^{\mathbf{2}}=\frac{\text { Flow, Lpd }}{\text { Area, } \mathrm{m}^{2}}$
Three Normal Equation $=\left(\mathrm{C}_{1} \times \mathrm{V}_{1}\right)+\left(\mathrm{C}_{2} \times \mathrm{V}_{2}\right)=\left(\mathrm{C}_{3} \times \mathrm{V}_{3}\right) \quad$ Where $V_{1}+V_{2}=V_{3} ; C=$ concentration, $V=$ volume or flow; Concentration units must match; Volume units must match

Total Solids, $\%=\frac{(\text { Dried Weight, } \mathrm{g})-(\text { Tare Weight, } \mathrm{g})(100)}{(\text { Wet Weight, } \mathrm{g})-(\text { Tare Weight, } \mathrm{g})}$
Two Normal Equation $=\left(\mathrm{C}_{1} \times \mathrm{V}_{1}\right)=\left(\mathrm{C}_{2} \times \mathrm{V}_{2}\right) \quad$ Where $C=$ Concentration, $V=$ volume or flow; Concentration units must match; Volume units must match

Velocity, $\mathrm{ft} / \mathbf{s e c}=\frac{\text { Flow Rate, } \mathrm{ft}^{3} / \mathrm{sec}}{A r e a, \mathrm{ft}^{2}}$
Velocity, $\mathbf{f t / s e c}=\frac{\text { Distance, } \mathrm{ft}}{\text { Time, } \mathrm{sec}}$
Velocity, $\mathbf{m} / \mathbf{s e c}=\frac{\text { Flow Rate, } \mathrm{m}^{3} / \mathrm{sec}}{\text { Area, } \mathrm{m}^{2}}$
Velocity, $\mathbf{m} / \mathbf{s e c}=\frac{\text { Distance }, \mathrm{m}}{\text { Time, } \text { sec }}$
Volatile Solids, $\%=\left[\frac{(\text { Dry Solids, } \mathrm{g})-(\text { Fixed Solids, } \mathrm{g})}{(\text { Dry Solids, } \mathrm{g})}\right] \times 100 \%$
Volume of Cone* $=(1 / 3)(0.785)\left(\right.$ Diameter $\left.^{2}\right)($ Height $)$
Volume of Cylinder* $=(0.785)\left(\right.$ Diameter $\left.^{2}\right)($ Height $)$
Volume of Rectangular Tank* $=($ Length $)($ Width $)($ Height $)$
Waste Milliequivalent $=(\mathrm{mL})($ Normality $)$
Water Use, gpcd $=\frac{\text { Volume of Water Produced, gpd }}{\text { Population }}$
Water Use, Lped $=\frac{\text { Volume of Water Produced, Lpd }}{\text { Population }}$
Watts $(\mathbf{A C}$ circuit $)=($ Volts $)($ Amps $)($ Power Factor $)$
Watts $(\mathbf{D C}$ circuit $)=($ Volts $)(\mathrm{Amps})$
Weir Overflow Rate, gpd/ft $=\frac{\text { Flow, gpd }}{\text { Weir Length, } \mathrm{ft}}$
Weir Overflow Rate, Lpd/m $=\frac{\text { Flow, Lpd }}{\text { Weir Length, } m}$
Wire-to-Water Efficiency, $\%=\frac{\text { Water } \mathrm{hp}}{\text { Motor } \mathrm{hp}} \times 100 \%$
Wire-to-Water Efficiency, $\%=\frac{(\text { Flow, gpm })(\text { Total Dynamic Head, } \mathrm{ft})(0.746 \mathrm{~kW} / \mathrm{hp})(100 \%)}{(1)}$
(3,960)(Electrical Demand, kW)

Abbreviations

atm atmospheres	MGD..................million US gallons per day
$\mathbf{B O D}_{5} \ldots$. biochemical oxygen demand	mg/Lmilligrams per liter
C Celsius	minminutes
$\mathrm{CBOD}_{5} \ldots$. carbonaceous biochemical oxygen demand	mL......................milliliters
cfscubic feet per second	MLmillion liters
cmcentimeters	MLDmillion liters per day
CODchemical oxygen demand	MLSS.................mixed liquor suspended solids
DO dissolved oxygen	MLVSSmixed liquor volatile suspended solids
EMFelectromotive force	OCR...................oxygen consumption rate
F........................Fahrenheit	ORPoxidation reduction potential
F/M ratio............ food to microorganism ratio	OUR..................oxygen uptake rate
ftfeet	PEpopulation equivalent
ft lb foot-pound	ppbparts per billion
g........................ grams	ppm...................parts per million
gal.....................US gallons	psi......................pounds per square inch
gfd......................US gallons flux per day	Qflow
gpcd...................US gallons per capita per day	RAS...................return activated sludge
gpd....................US gallons per day	RBCrotating biological contactor
gpg..................... grains per US gallon	RPM...................revolutions per minute
gpm....................US gallons per minute	SBOD_{5}................Soluble BOD
hp......................horsepower	SDI....................sludge density index
hrhours	secsecond
in.......................inches	SOUR.................specific oxygen uptake rate
kg....................... kilograms	SRTsolids retention time
km......................kilometers	SSsettleable solids
kPa kilopascals	$\mathbf{S S V}_{30} \ldots \ldots$. settled sludge volume 30 minute
kW.....................kilowatts	SVI....................sludge volume index
kWh...................kilowatt-hours	TOCtotal organic carbon
L liters	TS......................total solids
lb....................... pounds	TSStotal suspended solids
Lped liters per capita per day	VSvolatile solids
Lpd liters per day	VSSvolatile suspended solids
Lpm liters per minute	W.......................watts
LSI.....................Langelier Saturation Index	WASwaste activated sludge
m........................ meters	ydyards
MCRT mean cell residence time	yr.......................years
MG million US gallons	

Conversion Factors

$\begin{aligned} \text { 1 acre.................................. } & =43,560 \mathrm{ft}^{2} \\ & =4,046.9 \mathrm{~m}^{2}\end{aligned}$	1 inch $=2.54 \mathrm{~cm}$
	1 liter per second $=0.0864$ MLD
1 acre foot of water $=326,000 \mathrm{gal}$	1 meter of water $=9.8 \mathrm{kPa}$
1 atm	1 metric ton $=2,205 \mathrm{lb}$
	$=1,000 \mathrm{~kg}$
	1 mile $=5,280 \mathrm{ft}$
	$=1.61 \mathrm{~km}$
1 cubic foot of water $=7.48 \mathrm{gal}$	1 million US gallons per day $=694 \mathrm{gpm}$
$=62.4 \mathrm{lb}$	$=1.55 \mathrm{ft}^{3} / \mathrm{sec}$
1 cubic foot per second	1 pound................................... $=0.454 \mathrm{~kg}$
	1 pound per square inch $=2.31 \mathrm{ft}$ of water
1 cubic meter of water $\begin{aligned} & =1,000 \mathrm{~kg} \\ & =1,000 \mathrm{~L} \\ & =264 \mathrm{gal}\end{aligned}$	$=6.89 \mathrm{kPa}$
	1 square meter $=1.19 \mathrm{yd}^{2}$
	1 ton $=2,000 \mathrm{lb}$
1 foot $=0.305 \mathrm{~m}$	1\%... $=10,000 \mathrm{mg} / \mathrm{L}$
1 foot of water......................... $=0.433 \mathrm{psi}$	π or pi.................................... $=3.14$
1 gallon (US) $\begin{aligned} & =3.785 \mathrm{~L} \\ & =8.34 \mathrm{lb} \text { of water }\end{aligned}$	Population Equivalent,
	hydraulic $=100 \mathrm{gal} /$ person/day
1 grain per US gallon $=17.1 \mathrm{mg} / \mathrm{L}$	$=378.5 \mathrm{~L} /$ person/day
1 hectare................................. $=10,000 \mathrm{~m}^{2}$	Population Equivalent,
1 horsepower $=0.746 \mathrm{~kW}$	organic.................................. $=0.17 \mathrm{lb} \mathrm{BOD} /$ person/day
$\begin{aligned} & =746 \mathrm{~W} \\ & =33,000 \mathrm{ft} \mathrm{lb} / \mathrm{min} \end{aligned}$	$=0.077 \mathrm{~kg} \mathrm{BOD} /$ person/day

[^0]Copyright © 2017 by
Wastewater Treatment, Collection, Industrial,
Association of Boards of Certification
Laboratory Formula/Conversion Table - Page 7 of 8

*Pie Wheels

- To find the quantity above the horizontal line: multiply the pie wedges below the line together.
- To solve for one of the pie wedges below the horizontal line: cover that pie wedge, then divide the remaining pie wedge(s) into the quantity above the horizontal line.
- Given units must match the units shown in the pie wheel.
- When US and metric units or values differ, the metric is shown in parentheses, e.g. $\left(\mathrm{m}^{2}\right)$.

Electromotive Force (EMF), Volts

Force, Ib (Newtons)

Area of Rectangle

Feed Rate, lb/day (kg/day)

Loading Rate, lb/day (kg/day)

Volume of Cylinder

Flow Rate, $\mathrm{ft}^{3} / \mathrm{sec}\left(\mathrm{m}^{3} / \mathrm{sec}\right)$

Volume of Rectangular Tank

*Pie Wheel Format for this equation
is available at the end of this document

Copyright © 2017 by
Association of Boards of Certification

[^0]: ${ }^{*}$ Pie Wheel Format for this equation
 is available at the end of this document

